US009230104B2

a2z United States Patent (10) Patent No.: US 9,230,104 B2
Vasseur et al. 45) Date of Patent: Jan. 5, 2016
(54) DISTRIBUTED VOTING MECHANISM FOR 8,370,928 Bl 2/2013 Motwani et al.
ATTACK DETECTION 8,504,504 B2 8/2013 Liu
2004/0128355 Al* 7/2004 Chaoetal.ceoeene. 709/206
. . 2005/0286772 Al 12/2005 Albertelli
(71) Applicant: Cisco Technology, Inc., San Jose, CA 2007/0277242 Al* 11/2007 Bakeretal. ..ooovvvvvvnvin, 726/25
(US) 2008/0083029 Al 4/2008 Yeh et al.
2008/0140795 Al 6/2008 He et al.
(72) Inventors: Jean-Philippe Vasseur, Saint Martin 2009/0276852 Al* 11/2009 Alderson et al. 726/23
d’Uriage (FR); Andrea Di Pietro 2009/0287618 Al* 11/2009 Weinberger et al. 706/10
L CH,' Javier C M ;: 2010/0317391 Al 12/2010 Mody et al.
ausanne (CH); Javier Cruz Mota, 2011/0055920 AL* 3/2011 HAfili wooooorrerecsirererrrnenes 726/22
Assens (CH)
OTHER PUBLICATIONS
(73) Assignee: Cisco Technology, Inc., San Jose, CA
(US) Brachmann, Martina, et al. “End-to-end transport security in the
IP-Based Internet of Things.” Computer Communications and Net-
(*) Notice: Subject to any disclaimer, the term of this works (ICCCN), 2012 21st International Conference on. IEEE,
patent is extended or adjusted under 35 2012.*
U.S.C. 154(b) by 0 days, Dietterich, T. G., “Ensemble Methods in Machine Learning”, Lecture
Notes in Computer Science, vol. 1857, pp. 1-15, Springer Berlin
(21) Appl. No.: 14/273,676 Heidelberg.
Gnawali, et al., “The Minimum Rank with Hysteresis Objective
(22) Filed: May 9, 2014 Function”, Request for Comments 6719, Sep. 2012, 13 pages,
i Internet Engineering Task Force Trust.
(65) Prior Publication Data (Continued)
US 2015/0324582 Al Nowv. 12, 2015
Primary Examiner — Yogesh Paliwal
(51) Int.CL (74) Attorney, Agent, or Firm — Parker Ibrahim & Berg
HO4L 29/06 (2006.01) LLC; James M. Behmke; Kenneth J. Heywood
GOG6F 21/55 (2013.01)
(52) US.CL (57) ABSTRACT
CPC i, GO6F 21/554 (2013.01)
(58) Field of Classification Search In one embodiment, a network node receives a voting request
CPC ... GO6F 21/00; GO6F 21/55; GO6F 21/552; from a neighboring node that indicates a potential network
GOGF 21/554; GO6F 21/56; GO6F 21/561; attack. The network node determines a set of feature values to
GO6F 21/562; GO6F 21/567 beused as inputto a classifier based on the voting request. The
See application file for complete search history. network node also determines whether the potential network
attack is present by using the set of feature values as input to
(56) References Cited the classifier. The network node further sends a vote to the

U.S. PATENT DOCUMENTS

1/2011 Laxman et al.
1/2012 Lin

7,873,583 B2
8,103,727 B2

neighboring node that indicates whether the potential net-
work attack was determined to be present.

22 Claims, 13 Drawing Sheets

\[\ 800

805

‘[\810

| RECEIVE VOTING REQUEST FROM NEIGHBOR |

)

‘[\815

| DETERMINE FEATURE SET TO EVALUATE |

L

\[\ 820

| USE FEATURE SET TO DETERMINE WHETHER ATTACK IS PRESENT |

l

\[\ 825

| SEND VOTE TO NEIGHBOR |

./‘\ 830

US 9,230,104 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
Thubert, P., “Objective Function Zero for the Routing Protocol for
Low-Power and Lossy Networks (RPL)”, Request for Comments
6552, Mar. 2012, 14 pages, Internet Engineering Task Force Trust.
Vasseur, et al., “Routing Metrics Used for Path Calculation in Low-
Power and Lossy Networks”, Request for Comments 6551, Mar.
2012, 30 pages, Internet Engineering Task Force Trust.

Winter; et al., “RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks”, Internet Engineering Task Force, Request for
Comments 6550, Mar. 2012, 157 pages.

International Search Report mailed Aug. 4, 2015 in connection with
PCT/US2015/028459.

* cited by examiner

US 9,230,104 B2

Sheet 1 of 13

Jan. 5, 2016

U.S. Patent

001 \\,

(S)IAAYAS

011 dOIAHA a

SOT S2INI'T

US 9,230,104 B2

Sheet 2 of 13

Jan. 5, 2016

U.S. Patent

0sZ SN /

N UHm AOMLAN
WOYA/0L
092 (¥4
ATddNS (SYADVIIALINI
AAMOd SYOMLAN

8¥¢
SSHD0Ud
ANIHOVIN

DNINYVH'1

ST
SHINLONYLS
viva

YT
SSHO0¥d
DNILNOY

e
WHLSAS
ONILVYHdO

0 AMOWAN

0ze
(S)40SSAD0Ud

00 HOIAHA l\/

U.S. Patent Jan. 5,2016 Sheet 3 of 13 US 9,230,104 B2

MESSAGE
(E.G., DIO/DAO)

\[- 300

HEADER 310
TYPE/CODE 312

BODY/PAYLOAD 320
FLAGS/BITS 321
SEQUENCE 322
RANK 323
INSTANCE ID 324
DODAG ID 325
DESTINATION PREFIX 326

DAO

TRANSIT INFORMATION 327
SUB-OPTIONS 328

FIG. 3

US 9,230,104 B2

Sheet 4 of 13

Jan. 5, 2016

U.S. Patent

oo_\,

0sT
SN

00v Dvd

00T 4DIAHd a

0T SINIT

US 9,230,104 B2

Sheet 5 0of 13

Jan. 5, 2016

U.S. Patent

HAON

00r Dvd

— 00¢C OIA
0¢S1 4d

001 \, SHN favd 20T SIINIT

AOVLLV '

US 9,230,104 B2

Sheet 6 of 13

Jan. 5, 2016

U.S. Patent

001 \\,

0sT
SIAN

JAON
ADVILY

00¥ Dvd

00C 9DIAHd

0T SINI'T

US 9,230,104 B2

Sheet 7 of 13

Jan. 5, 2016

U.S. Patent

2T

709
(S)1sHNOTA
DONLLOA

JADVILVY

AAON Ny

007 OVAd

—
T
ocT 00¢ IDIAHd a

001 \, SN favd 70T SSINIT ————

US 9,230,104 B2

Sheet 8 of 13

Jan. 5, 2016

U.S. Patent

001 .\,

0ST
SN

JOLIJHA
HUNLYHA

YOLOIA
TANLVAA
ANINIALHA

JAON
AOVLLV

00r DVA

00C dDIAHA

0T SINI'T

US 9,230,104 B2

Sheet 9 of 13

Jan. 5, 2016

U.S. Patent

001 .\,

(49

HAFLDILAT
ADVILV

0sT
SIAN

LAALDILAA
DVLLV

{aALDd1ad
ADVLLY

HUON
MAOVLLV

00 HVAd

00T D1AHA

0T S2INI'T

US 9,230,104 B2

Sheet 10 of 13

Jan. 5, 2016

U.S. Patent

001 ‘\,

0ST
SN

dAON
MOVILLV

00r DVd

00T 4D1Add

20T SINIT

US 9,230,104 B2

Sheet 11 of 13

Jan. 5, 2016

U.S. Patent

001 ‘\,

0ST
SN

HTAWNIIANOD
ADVLLVY

, (®

ddON
ADVILLV

00 Dvd

00T 4DIAHd

¢0T S2INI'T

D18

U.S. Patent Jan. 5,2016 Sheet 12 of 13 US 9,230,104 B2

\[\ 700

705

@ \[\ 710
DETECT POTENTIAL ATTACK
\/\ 715
SEND VOTING REQUEST TO NEIGHBORS
\[\ 720
RECEIVE NEIGHBOR VOTES
\[\ 725
CONFIRM PRESENCE OF ATTACK
\[\ 730
GENERATE ALERT
735
END

FIG. 7

U.S. Patent Jan. 5,2016 Sheet 13 of 13 US 9,230,104 B2

\[\ 800

805

\[\ 810
RECEIVE VOTING REQUEST FROM NEIGHBOR
‘[\ 815
DETERMINE FEATURE SET TO EVALUATE
\[\ 820
USE FEATURE SET TO DETERMINE WHETHER ATTACK IS PRESENT

\[\ 825

SEND VOTE TO NEIGHBOR

830

END

FIG. 8

US 9,230,104 B2

1
DISTRIBUTED VOTING MECHANISM FOR
ATTACK DETECTION

TECHNICAL FIELD

The present disclosure relates generally to computer net-
works, and, more particularly, to performing attack detection
using a distributed voting mechanism.

BACKGROUND

Low power and Lossy Networks (LLNs), e.g., sensor net-
works, have a myriad of applications, such as Smart Grid and
Smart Cities. Various challenges are presented with LLLNs,
such as lossy links, low bandwidth, battery operation, low
memory and/or processing capability of a device, etc. Chang-
ing environmental conditions may also aftect device commu-
nications. For example, physical obstructions (e.g., changes
in the foliage density of nearby trees, the opening and closing
of'doors, etc.), changes in interference (e.g., from other wire-
less networks or devices), propagation characteristics of the
media (e.g., temperature or humidity changes, etc.), and the
like also present unique challenges to LLNs.

One type of network attack that is of particular concern in
the context of LLNs is a Denial of Service (DoS) attack.
Typically, DoS attacks operate by attempting to exhaust the
available resources of a service (e.g., bandwidth, memory,
etc.), thereby preventing legitimate traffic from using the
resource. A DoS attack may also be distributed, to conceal the
presence of the attack. For example, a distributed DoS
(DDoS) attack may involve multiple attackers sending mali-
cious requests, making it more difficult to distinguish when
an attack is underway.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals
indicate identically or functionally similar elements, of
which:

FIG. 1 illustrates an example communication network;

FIG. 2 illustrates an example network device/node;

FIG. 3 illustrates an example message;

FIG. 4 illustrates an example directed acyclic graph (DAG)
in the communication network of FIG. 1;

FIGS. 5A-5B illustrate an example of the detection and
reporting of a potential network attack;

FIGS. 6A-6E illustrate an example of attack detection
using distributed voting;

FIG. 7 illustrates an example simplified procedure for
detecting an attack using distributed voting; and

FIG. 8 illustrates an example simplified procedure for par-
ticipating in a distributed vote for attack detection.

DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

According to one or more embodiments of the disclosure,
a first network device detects a potential network attack by
executing a classifier. The classifier is configured to select a
label from among a plurality of labels based on a set of input
features. Voting requests are sent by the first network device
to a plurality of neighboring network devices. The voting
requests identify the potential network attack. A particular
neighboring network device determines input features for a

10

15

20

25

30

35

40

45

50

55

60

65

2

local classifier and uses the local classifier to generate a vote
regarding the potential network attack. The first network
device receives, from one or more of the neighboring network
devices, votes regarding the potential network attack. The
first network device then confirms that the network attack is
present and generates an alert that an attack has been detected.

According to various embodiments, a network node
receives a voting request from a neighboring node that indi-
cates a potential network attack. The network node deter-
mines a set of feature values to be used as input to a classifier
based on the voting request. The network node also deter-
mines whether the potential network attack is present by
using the set of feature values as input to the classifier. The
network node further sends a vote to the neighboring node
that indicates whether the potential network attack was deter-
mined to be present.

Description

A computer network is a geographically distributed collec-
tion of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types of networks are available, ranging
from local area networks (LANs) to wide area networks
(WANs). LANSs typically connect the nodes over dedicated
private communications links located in the same general
physical location, such as a building or campus. WANs, onthe
other hand, typically connect geographically dispersed nodes
over long-distance communications links, such as common
carrier telephone lines, optical lightpaths, synchronous opti-
cal networks (SONET), synchronous digital hierarchy (SDH)
links, or Powerline Communications (PLC) such as IEEE
61334, IEEE P1901.2, and others. In addition, a Mobile Ad-
Hoc Network (MANET) is akind of wireless ad-hoc network,
which is generally considered a self-configuring network of
mobile routers (and associated hosts) connected by wireless
links, the union of which forms an arbitrary topology.

Smart object networks, such as sensor networks, in particu-
lar, are a specific type of network having spatially distributed
autonomous devices such as sensors, actuators, etc., that
cooperatively monitor physical or environmental conditions
at different locations, such as, e.g., energy/power consump-
tion, resource consumption (e.g., water/gas/etc. for advanced
metering infrastructure or “AMI” applications) temperature,
pressure, vibration, sound, radiation, motion, pollutants, etc.
Other types of smart objects include actuators, e.g., respon-
sible for turning on/off an engine or perform any other
actions. Sensor networks, a type of smart object network, are
typically shared-media networks, such as wireless or PLC
networks. That is, in addition to one or more sensors, each
sensor device (node) in a sensor network may generally be
equipped with a radio transceiver or other communication
port such as PL.C, a microcontroller, and an energy source,
such as a battery. Often, smart object networks are considered
field area networks (FANs), neighborhood area networks
(NANGs), personal area networks (PANs), etc. Generally, size
and cost constraints on smart object nodes (e.g., sensors)
result in corresponding constraints on resources such as
energy, memory, computational speed and bandwidth.

FIG. 1 is a schematic block diagram of an example com-
puter network 100 illustratively comprising nodes/devices
110 (e.g., labeled as shown, “root,” “11,” “12,”...“45,” and
described in FIG. 2 below) interconnected by various meth-
ods of communication. For instance, the links 105 may be
wired links or shared media (e.g., wireless links, PL.C links,
etc.) where certain nodes 110, such as, e.g., routers, sensors,

US 9,230,104 B2

3

computers, etc., may be in communication with other nodes
110, e.g., based on distance, signal strength, current opera-
tional status, location, etc. The illustrative root node, such as
afield area router (FAR) of a FAN, may interconnect the local
network with a WAN 130, which may house one or more
other relevant devices such as management devices or servers
150, e.g., a network management server (NMS), a dynamic
host configuration protocol (DHCP) server, a constrained
application protocol (CoAP) server, etc. Those skilled in the
art will understand that any number of nodes, devices, links,
etc. may be used in the computer network, and that the view
shown herein is for simplicity. Also, those skilled in the art
will further understand that while the network is shown in a
certain orientation, particularly with a “root” node, the net-
work 100 is merely an example illustration that is not meant
to limit the disclosure.

Data packets 140 (e.g., traffic and/or messages) may be
exchanged among the nodes/devices of the computer network
100 using predefined network communication protocols such
as certain known wired protocols, wireless protocols (e.g.,
IEEE Std. 802.15.4, WiFi, Bluetooth®, etc.), PLC protocols,
or other shared-media protocols where appropriate. In this
context, a protocol consists of a set of rules defining how the
nodes interact with each other.

FIG. 2 is a schematic block diagram of an example node/
device 200 that may be used with one or more embodiments
described herein, e.g., as any of the nodes or devices shown in
FIG. 1 above. The device may comprise one or more network
interfaces 210 (e.g., wired, wireless, PL.C, etc.), at least one
processor 220, and a memory 240 interconnected by a system
bus 250, as well as a power supply 260 (e.g., battery, plug-in,
etc.).

The network interface(s) 210 contain the mechanical, elec-
trical, and signaling circuitry for communicating data over
links 105 coupled to the network 100. The network interfaces
may be configured to transmit and/or receive data using a
variety of different communication protocols. Note, further,
that the nodes may have two different types of network con-
nections 210, e.g., wireless and wired/physical connections,
and that the view herein is merely for illustration. Also, while
the network interface 210 is shown separately from power
supply 260, for PLC (where the PL.C signal may be coupled to
the power line feeding into the power supply) the network
interface 210 may communicate through the power supply
260, or may be an integral component of the power supply.

The memory 240 comprises a plurality of storage locations
that are addressable by the processor 220 and the network
interfaces 210 for storing software programs and data struc-
tures associated with the embodiments described herein.
Note that certain devices may have limited memory or no
memory (e.g., no memory for storage other than for pro-
grams/processes operating on the device and associated
caches). The processor 220 may comprise hardware elements
or hardware logic adapted to execute the software programs
and manipulate the data structures 245. An operating system
242, portions of which are typically resident in memory 240
and executed by the processor, functionally organizes the
device by, inter alia, invoking operations in support of soft-
ware processes and/or services executing on the device.
These software processes and/or services may comprise a
routing process/services 244 and an illustrative “learning
machine” process 248, which may be configured depending
upon the particular node/device within the network 100 with
functionality ranging from intelligent learning machine pro-
cesses to merely communicating with intelligent learning
machines, as described herein. Note also that while the learn-
ing machine process 248 is shown in centralized memory

10

15

20

25

30

35

40

45

50

55

60

65

4

240, alternative embodiments provide for the process to be
specifically operated within the network interfaces 210.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
readable media, may be used to store and execute program
instructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, it is
expressly contemplated that various processes may be
embodied as modules configured to operate in accordance
with the techniques herein (e.g., according to the functional-
ity of a similar process). Further, while the processes have
been shown separately, those skilled in the art will appreciate
that processes may be routines or modules within other pro-
cesses.

Routing process (services) 244 contains computer execut-
able instructions executed by the processor 220 to perform
functions provided by one or more routing protocols, such as
proactive or reactive routing protocols as will be understood
by those skilled in the art. These functions may, on capable
devices, be configured to manage a routing/forwarding table
(a data structure 245) containing, e.g., data used to make
routing/forwarding decisions. In particular, in proactive rout-
ing, connectivity is discovered and known prior to computing
routes to any destination in the network, e.g., link state rout-
ing such as Open Shortest Path First (OSPF), or Intermediate-
System-to-Intermediate-System (ISIS), or Optimized Link
State Routing (OLSR). Reactive routing, on the other hand,
discovers neighbors (i.e., does not have an a priori knowledge
of network topology), and in response to a needed route to a
destination, sends a route request into the network to deter-
mine which neighboring node may be used to reach the
desired destination. Example reactive routing protocols may
comprise Ad-hoc On-demand Distance Vector (AODV),
Dynamic Source Routing (DSR), DYnamic MANET On-
demand Routing (DYMO), etc. Notably, on devices not
capable or configured to store routing entries, routing process
244 may consist solely of providing mechanisms necessary
for source routing techniques. That is, for source routing,
other devices in the network can tell the less capable devices
exactly where to send the packets, and the less capable
devices simply forward the packets as directed.

Learning machine process 248 contains computer execut-
able instructions executed by the processor 220 to perform
various functions, such as attack detection and reporting. In
general, machine learning is concerned with the design and
the development of techniques that take as input empirical
data (such as network statistics and performance indicators),
and recognize complex patterns in these data. One very com-
mon pattern among machine learning techniques is the use of
an underlying model M, whose parameters are optimized for
minimizing the cost function associated to M, given the input
data. For instance, in the context of classification, the model
M may be a straight line that separates the data into two
classes such that M=a*x+b*y+c and the cost function would
be the number of misclassified points. The learning process
then operates by adjusting the parameters a,b.c such that the
number of misclassified points is minimal. After this optimi-
zation phase (or learning phase), the model M can be used
very easily to classify new data points. Often, M is a statistical
model, and the cost function is inversely proportional to the
likelihood of M, given the input data.

As also noted above, learning machines (LMs) are compu-
tational entities that rely on one or more machine learning
processes for performing a task for which they haven’t been
explicitly programmed to perform. In particular, LMs are
capable of adjusting their behavior to their environment. In
the context of LL.Ns, and more generally in the context of the

US 9,230,104 B2

5

10T (or Internet of Everything, IoE), this ability will be very
important, as the network will face changing conditions and
requirements, and the network will become too large for
efficiently management by a network operator.

Artificial Neural Networks (ANNs) are a type of machine
learning technique whose underlying mathematical models
that were developed inspired by the hypothesis that mental
activity consists primarily of electrochemical activity
between interconnected neurons. ANNs are sets of computa-
tional units (neurons) connected by directed weighted links.
By combining the operations performed by neurons and the
weights applied by the links, ANNs are able to perform highly
non-linear operations to input data. The interesting aspect of
ANNSs, though, is not that they can produce highly non-linear
outputs of the input, but that they can learn to reproduce a
predefined behavior through a training process. Accordingly,
an ANN may be trained to identify deviations in the behavior
of a network that could indicate the presence of a network
attack (e.g., a change in packet losses, link delays, number of
requests, etc.).

Low power and Lossy Networks (LLNs), e.g., certain sen-
sor networks, may be used in a myriad of applications such as
for “Smart Grid” and “Smart Cities.” A number of challenges
in LLNs have been presented, such as:

1) Links are generally lossy, such that a Packet Delivery
Rate/Ratio (PDR) can dramatically vary due to various
sources of interferences, e.g., considerably affecting the bit
error rate (BER);

2) Links are generally low bandwidth, such that control
plane traffic must generally be bounded and negligible com-
pared to the low rate data traffic;

3) There are a number of use cases that require specifying
a set of link and node metrics, some of them being dynamic,
thus requiring specific smoothing functions to avoid routing
instability, considerably draining bandwidth and energy;

4) Constraint-routing may be required by some applica-
tions, e.g., to establish routing paths that will avoid non-
encrypted links, nodes running low on energy, etc.;

5) Scale of the networks may become very large, e.g., on
the order of several thousands to millions of nodes; and

6) Nodes may be constrained with alow memory, areduced

processing capability, a low power supply (e.g., battery).

In other words, LLNs are a class of network in which both
the routers and their interconnect are constrained: LLN rout-
ers typically operate with constraints, e.g., processing power,
memory, and/or energy (battery), and their interconnects are
characterized by, illustratively, high loss rates, low data rates,
and/or instability. LLNs are comprised of anything from a few
dozen and up to thousands or even millions of LLN routers,
and support point-to-point traffic (between devices inside the
LLN), point-to-multipoint traffic (from a central control point
to a subset of devices inside the LLN) and multipoint-to-point
traffic (from devices inside the LLN towards a central control
point).

An example implementation of LLNs is an “Internet of
Things” network. Loosely, the term “Internet of Things™ or
“loT” may be used by those in the art to refer to uniquely
identifiable objects (things) and their virtual representations
in a network-based architecture. In particular, the next fron-
tier in the evolution of the Internet is the ability to connect
more than just computers and communications devices, but
rather the ability to connect “objects” in general, such as
lights, appliances, vehicles, HVAC (heating, ventilating, and
air-conditioning), windows and window shades and blinds,
doors, locks, etc. The “Internet of Things™ thus generally
refers to the interconnection of objects (e.g., smart objects),
such as sensors and actuators, over a computer network (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

6

IP), which may be the Public Internet or a private network.
Such devices have been used in the industry for decades,
usually in the form of non-IP or proprietary protocols that are
connected to IP networks by way of protocol translation
gateways. With the emergence of a myriad of applications,
such as the smart grid, smart cities, and building and indus-
trial automation, and cars (e.g., that can interconnect millions
of objects for sensing things like power quality, tire pressure,
and temperature and that can actuate engines and lights), it
has been of the utmost importance to extend the IP protocol
suite for these networks.

An example protocol specified in an Internet Engineering
Task Force (IETF) Proposed Standard, Request for Comment
(RFC) 6550, entitled “RPL: IPv6 Routing Protocol for Low
Power and Lossy Networks” by Winter, et al. (March 2012),
provides a mechanism that supports multipoint-to-point
(MP2P) traffic from devices inside the LLN towards a central
control point (e.g., LLN Border Routers (LBRs) or “root
nodes/devices” generally), as well as point-to-multipoint
(P2MP) traffic from the central control point to the devices
inside the LLN (and also point-to-point, or “P2P” traffic).
RPL (pronounced “ripple”) may generally be described as a
distance vector routing protocol that builds a Directed Acy-
clic Graph (DAG) for use in routing traffic/packets 140, in
addition to defining a set of features to bound the control
traffic, support repair, etc. Notably, as may be appreciated by
those skilled in the art, RPL also supports the concept of
Multi-Topology-Routing (MTR), whereby multiple DAGs
can be built to carry traffic according to individual require-
ments.

A DAG is a directed graph having the property that all
edges (and/or vertices) are oriented in such a way that no
cycles (loops) are supposed to exist. All edges are contained
in paths oriented toward and terminating at one or more root
nodes (e.g., “clusterheads or “sinks™), often to interconnect
the devices of the DAG with a larger infrastructure, such as
the Internet, a wide area network, or other domain. In addi-
tion, a Destination Oriented DAG (DODAG) is a DAG rooted
at a single destination, i.e., at a single DAG root with no
outgoing edges. A “parent” of a particular node within a DAG
is an immediate successor of the particular node on a path
towards the DAG root, such that the parent has a lower “rank”
than the particular node itself, where the rank of a node
identifies the node’s position with respect to a DAG root (e.g.,
the farther away a node is from a root, the higher is the rank of
that node). Further, in certain embodiments, a sibling of a
node within a DAG may be defined as any neighboring node
which is located at the same rank within a DAG. Note that
siblings do not necessarily share a common parent, and routes
between siblings are generally not part of a DAG since there
is no forward progress (their rank is the same). Note also that
a tree is a kind of DAG, where each device/node in the DAG
generally has one parent or one preferred parent.

DAGs may generally be built (e.g., by a DAG process)
based on an Objective Function (OF). The role of the Objec-
tive Function is generally to specify rules on how to build the
DAG (e.g. number of parents, backup parents, etc.).

In addition, one or more metrics/constraints may be adver-
tised by the routing protocol to optimize the DAG against.
Also, the routing protocol allows for including an optional set
of constraints to compute a constrained path, such as if a link
or a node does not satisty a required constraint, it is “pruned”
from the candidate list when computing the best path. (Alter-
natively, the constraints and metrics may be separated from
the OF.) Additionally, the routing protocol may include a
“goal” that defines a host or set of hosts, such as a host serving
as a data collection point, or a gateway providing connectivity

US 9,230,104 B2

7

to an external infrastructure, where a DAG’s primary objec-
tive is to have the devices within the DAG be able to reach the
goal. In the case where a node is unable to comply with an
objective function or does not understand or support the
advertised metric, it may be configured to join a DAG as a leaf
node. As used herein, the various metrics, constraints, poli-
cies, etc., are considered “DAG parameters.”

Tlustratively, example metrics used to select paths (e.g.,
preferred parents) may comprise cost, delay, latency, band-
width, expected transmission count (ETX), etc., while
example constraints that may be placed on the route selection
may comprise various reliability thresholds, restrictions on
battery operation, multipath diversity, bandwidth require-
ments, transmission types (e.g., wired, wireless, etc.). The OF
may provide rules defining the load balancing requirements,
such as a number of selected parents (e.g., single parent trees
or multi-parent DAGs). Notably, an example for how routing
metrics and constraints may be obtained may be found in an
IETF RFC, entitled “Routing Metrics used for Path Calcula-
tion in Low Power and Lossy Networks”<RFC 6551> by
Vasseur, et al. (March 2012 version). Further, an example OF
(e.g., a default OF) may be found in an IETF RFC, entitled
“RPL Objective Function 0”<RFC 6552> by Thubert (March
2012 version) and “The Minimum Rank Objective Function
with Hysteresis” <RFC 6719> by O. Gnawali et al. (Septem-
ber 2012 version).

Building a DAG may utilize a discovery mechanism to
build a logical representation of the network, and route dis-
semination to establish state within the network so that rout-
ers know how to forward packets toward their ultimate des-
tination. Note that a “router” refers to a device that can
forward as well as generate traffic, while a “host” refers to a
device that can generate but does not forward traffic. Also, a
“leaf” may be used to generally describe a non-router that is
connected to a DAG by one or more routers, but cannot itself
forward traffic received on the DAG to another router on the
DAG. Control messages may be transmitted among the
devices within the network for discovery and route dissemi-
nation when building a DAG.

According to the illustrative RPL protocol, a DODAG
Information Object (DIO) is a type of DAG discovery mes-
sage that carries information that allows a node to discover a
RPL Instance, learn its configuration parameters, select a
DODAG parent set, and maintain the upward routing topol-
ogy. In addition, a Destination Advertisement Object (DAO)
is a type of DAG discovery reply message that conveys des-
tination information upwards along the DODAG so that a
DODAG root (and other intermediate nodes) can provision
downward routes. A DAO message includes prefix informa-
tion to identify destinations, a capability to record routes in
support of source routing, and information to determine the
freshness ofa particular advertisement. Notably, “upward” or
“up” paths are routes that lead in the direction from leaf nodes
towards DAG roots, e.g., following the orientation of the
edges within the DAG. Conversely, “downward” or “down”
paths are routes that lead in the direction from DAG roots
towards leafnodes, e.g., generally going in the opposite direc-
tion to the upward messages within the DAG.

Generally, a DAG discovery request (e.g., DIO) message is
transmitted from the root device(s) of the DAG downward
toward the leaves, informing each successive receiving
device how to reach the root device (that is, from where the
request is received is generally the direction of the root).
Accordingly, a DAG is created in the upward direction toward
the root device. The DAG discovery reply (e.g., DAO) may
then be returned from the leaves to the root device(s) (unless
unnecessary, such as for UP flows only), informing each

40

45

55

8

successive receiving device in the other direction how to
reach the leaves for downward routes. Nodes that are capable
of maintaining routing state may aggregate routes from DAO
messages that they receive before transmitting a DAO mes-
sage. Nodes that are not capable of maintaining routing state,
however, may attach a next-hop parent address. The DAO
message is then sent directly to the DODAG root that can in
turn build the topology and locally compute downward routes
to all nodes in the DODAG. Such nodes are then reachable
using source routing techniques over regions of the DAG that
are incapable of storing downward routing state. In addition,
RPL also specifies a message called the DIS (DODAG Infor-
mation Solicitation) message that is sent under specific cir-
cumstances so as to discover DAG neighbors and join a DAG
or restore connectivity.

FIG. 3 illustrates an example simplified control message
format 300 that may be used for discovery and route dissemi-
nation when building a DAG, e.g., as a DIO, DAO, or DIS
message. Message 300 illustratively comprises a header 310
with one or more fields 312 that identify the type of message
(e.g., a RPL control message), and a specific code indicating
the specific type of message, e.g., a DIO, DAO, or DIS.
Within the body/payload 320 of the message may be a plu-
rality of fields used to relay the pertinent information. In
particular, the fields may comprise various flags/bits 321, a
sequence number 322, a rank value 323, an instance 1D 324,
a DODAG ID 325, and other fields, each as may be appreci-
ated in more detail by those skilled in the art. Further, for DAO
messages, additional fields for destination prefixes 326 and a
transit information field 327 may also be included, among
others (e.g., DAO_Sequence used for ACKs, etc.). For any
type of message 300, one or more additional sub-option fields
328 may be used to supply additional or custom information
within the message 300. For instance, an objective code point
(OCP) sub-option field may be used within a DIO to carry
codes specifying a particular objective function (OF) to be
used for building the associated DAG. Alternatively, sub-
option fields 328 may be used to carry other certain informa-
tion within a message 300, such as indications, requests,
capabilities, lists, notifications, etc., as may be described
herein, e.g., in one or more type-length-value (TLV) fields.

FIG. 4 illustrates an example simplified DAG that may be
created, e.g., through the techniques described above, within
network 100 of FIG. 1. For instance, certain links 105 may be
selected for each node to communicate with a particular par-
ent (and thus, in the reverse, to communicate with a child, if
one exists). These selected links form the DAG 410 (shown as
bolded lines), which extends from the root node toward one or
more leafnodes (nodes without children). Traffic/packets 140
(shown in FIG. 1) may then traverse the DAG 410 in either the
upward direction toward the root or downward toward the leaf
nodes, particularly as described herein.

As noted above, LLNs are typically limited in terms of
available resources and tend to be more dynamic than other
forms of networks, leading to a number of challenges when
attempting to detect DoS and other forms of network attacks.
In particular, the limited computing resources available to a
given network node may prevent the node from hosting a
more powerful learning machine process. In some cases, the
node may simply export observation data to a learning
machine hosted by a device with greater resources (e.g., a
FAR). However, doing so also increases traffic overhead in
the network, which may impact performance in an LLN.

According to various embodiments, lightweight learning
machine classifiers may be distributed to network nodes for
purposes of attack detection. In general, a classifier refers to
amachine learning process that is operable to associate a label

US 9,230,104 B2

9

from among a set of labels with to an input set of data. For
example, a classifier may apply a label (e.g., “Attack” or “No
Attack”™) to a given set of network metrics (e.g., traffic rate,
etc.). The distributed classifiers may be considered “light-
weight” in that they may have lower computational require-
ments than a full-fledged classifier, at the tradeoff of lower
performance. To improve attack detection, a central comput-
ing device (e.g., a FAR, NMS, etc.) that has greater resources
may execute a more computationally intensive classifier in
comparison to the distributed lightweight classifier. In cases
in which a distributed classifier detects an attack, it may
provide data to the central device to validate the results and/or
to initiate countermeasures. However, since the performance
of a distributed classifier may be relatively low, this also
means that there may be a greater amount of false positives
reported to the central classifier.

Referring now to FIGS. 5A-5B, an example is illustrated of
a network attack being detected and reported within network
100. Assume for illustrative purposes that lightweight classi-
fiers are distributed to the various nodes in network 100 and
that a more power classifier is executed by the FAR. As shown
in FIG. 5A, an attack node/device may launch an attack
targeted at node 31. As a result of the attack, a lightweight
classifier on node 31 may detect the attack based on an
observed feature set of information (e.g., transmission suc-
cess rates, reception success rates, etc.), as shown in FIG. 5B.
In response, node 31 may generate and send an alert 508 to a
supervisory device (e.g., the FAR) to verify the attack using a
more powerful classifier and/or to take corrective measures.
In cases in which alert 508 is a false positive, however, this
means unnecessary traffic within network 100, which may
already have limited bandwidth available for legitimate traf-
fic.

Distributed Voting for Attack Detection

The techniques herein provide a voting mechanism
whereby a network node that detects a network attack initiates
voting among its neighboring devices before alerting a central
device. This limits the number of alarms to be sent to a
higher-tier classifier (e.g., hosted in the FAR), thereby reduc-
ing the use of network resources for reporting, potentially
avoiding unnecessary mitigation actions, and also allowing
for faster detection and mitigation to occur. In some aspects,
a node whose local classifier detects an attack may send a
broadcast message (potentially with a dynamically computed
time to live (TTL) value) to all of the nodes in its physical
range, thus triggering a voting procedure. Each of the neigh-
bors may use its own local classifier to detect whether the
triggering node is actually being attacked and sends back the
result. The triggering node, based on the received results, then
decides whether to send an alarm to the LLN router, or poten-
tially to all nodes in the network.

Specifically, according to one or more embodiments of the
disclosure as described in detail below, a network node
receives a voting request from a neighboring node that indi-
cates a potential network attack. The network node deter-
mines a set of feature values to be used as input to a classifier
based on the voting request. The network node also deter-
mines whether the potential network attack is present by
using the set of feature values as input to the classifier. The
network node further sends a vote to the neighboring node
that indicates whether the potential network attack was deter-
mined to be present.

Tlustratively, the techniques described herein may be per-
formed by hardware, software, and/or firmware, such as in
accordance with the learning machine process 248, which
may contain computer executable instructions executed by
the processor 220 (or independent processor of interfaces

10

15

20

25

30

35

40

45

50

55

65

10

210) to perform functions relating to the techniques described
herein, e.g., in conjunction with routing process 244. For
example, the techniques herein may be treated as extensions
to conventional protocols, such as the various PLC protocols
or wireless communication protocols, and as such, may be
processed by similar components understood in the art that
execute those protocols, accordingly.

Operationally, nodes in an LLN may initiate a voting pro-
cess with their neighboring nodes in order to detect network
attacks locally before sending an alert to a central classifier or
other device. In some implementations, each network node
may execute its own local classifier that continuously moni-
tors observed network behavior (e.g., input features for the
classifier), to detect network attacks.

In various embodiments, a node that detects an attack may
initiate voting among its neighboring nodes by sending voting
requests to the neighboring nodes. For example, as shown in
FIG. 6A, the learning machine classifier executed by node 31
may determine that a network attack is potentially underway.
In response, node 31 may send voting requests 602 to the
classifiers of its neighboring nodes, to validate the detected
attack. In one embodiment, a voting request 602 may be a
layer-2 (e.g., IEEE 802.15.4, PLC P1901.2) broadcast mes-
sage that contains one or more of the following:

1) The classification result—In various cases, the behavior
class returned by the classifier may be included in a
voting request. For example, node 31 may include the
label {“Attack”} within voting request 602. In some
embodiments, the classification result may also include
an associated confidence index for the classification. For
example, if the classifier is a maximum likelihood clas-
sifier, the confidence metric may be a likelihood metric.
This type of classifier associates each class with a sta-
tistical model. The conditional probability of an input
observation (e.g., its likelihood) according to each
model is then computed and the observation is attributed
to the class/label with the highest probability.

2) A description of the installed classifier—In some imple-
mentations, a description of the classifier that detected
an attack may be included in a voting request. For
example, the voting request may indicate whether the
classifier is an ANN, support vector machine (SVM),
etc. The description may also include the list of input
features used by the classifier. Notably, in implementa-
tions in which every node executes the same type of
classifier, this field may be omitted (which may often be
the case when the nodes all belong to the same WPAN).

3) The vector(s) of features that triggered classification—
To validate a detected attack, a voting request may also
include the input features and input feature values that
were used by the initiating classifier to detect an attack.
For example, the vector may include a received signal
strength indication (RSSI) value, a reception (RX) suc-
cess rate, or any other observations that may be used to
detect the presence of a network attack.

4) A TTL value—In some embodiments, a voting request
may also include an indicated time at which a voter
should perform the voting/classification.

Voting request messages may be sent to, and received by,
all of the nodes within the physical range of the attacked node.
Note, in the case of IEEE 802.15.4 link layer with frequency
hopping, the broadcast schedule is encrypted. Thus, the use of
the broadcast schedule (which is only available to authenti-
cated nodes) allows even a node which is actually under
attack to communicate with its neighbors. Other strategies
may request voting by sending multiple copies of a link-layer

US 9,230,104 B2

11

broadcast message using different frequencies, in order to
increase the probability for other nodes to successfully
receive the message.

As noted above, a voting request message may be sent with
a limited TTL dynamically computed by the FAR, according
to its knowledge of the physical topology of the network.
Indeed, if the FAR determines that there are M nodes that are
K hops away that are capable of detecting an attack against a
node N, then the voting request message may be sent using a
broadcast link layer address, but with an IP TTL=K, in order
to avoid unnecessary bandwidth consumption.

In another embodiment, the intervention of the FAR can be
avoided by simply having nodes never forward a received
voting request based on the assumption that all of the nodes in
the physical range of the target node will still receive the
message with no need for other nodes to forward the request
(e.g., multiple transmissions can be used for copying with
losses). Notice that this mechanism limits the set of voting
nodes to those in the physical range of the sender.

For the sake of illustration, the node that sends the voting
request is referred to herein as the “target node” and the nodes
that receive such a request are referred to herein as “neigh-
boring nodes.” For example, in the configuration of FIG. 6A,
node 31 is a target node and nodes 21, 32, 41, and 42 are its
neighboring nodes.

Each neighboring node receiving a voting request may
perform a local detection attempt by using its own local
classifier. This may be done, for example, to detect whether a
multi-node attack is in progress and whether the node itself'is
under attack. If the local classifier also detects an attack, the
node may initiate its own voting procedure by sending, in
turn, voting requests to its own neighbors. In one embodi-
ment, these messages may be sent after the expiration of a
random local timer, to avoid an undesirable spike of 1.2
request messages.

In addition to performing its own attack detection, a node
that receives a voting request may also use its local classifier
to vote on the conclusions reached by other devices. In par-
ticular, as shown in FIG. 6B, a neighboring node that receives
as voting request may determine a feature vector for its local
classifier to use for purposes of voting. At this point, two
possibilities may exist. In one case, the neighboring node can
evaluate the feature set for the target node based on its own
perceived behavior of the target node (e.g., the voting node
may use its own observations of the target node as the feature
vector for purposes of voting). In other cases, however, the
neighboring node may not be able to evaluate all of the fea-
tures for the target node (e.g., the features specified in the
voting request).

The following example illustrates a case in which a neigh-
boring node is able to use its own observations as the feature
vector during voting. Assume that the classifier of node 31
detects a jamming attack based on metrics such as an RSSI
value and an RX success rate. In this case, the neighboring
node (e.g., node 21) will be able to estimate the RX success
probability and RSSI associated with the target node (e.g.,
node 31). For example, the RSSI can be estimated based on
the forward RSSI statistics enclosed in acknowledgement
(ACK) messages. Similarly, the RX success probability can
be estimated based on the number of successful transmissions
from the neighboring node to the target node (e.g., the number
of successful transmissions from node 21 to node 31). In
some cases, the neighboring node may also collect statistics
about the successful transmissions of other nodes by observ-
ing neighborhood traffic. For example, in some cases, node 21
may collect information regarding successful transmissions
between nodes 31 and 32 by listening in on the traffic between

10

15

20

25

30

35

40

45

50

55

60

65

12

the two nodes. As used herein, “externally observable” fea-
tures refer to those features regarding a target node that can be
independently observed or estimated by a neighboring node.

The following example illustrates a case in which a feature
may not be externally observable. In particular, assume that
one of the features used by the target node to detect the attack
is a transmission (TX) success probability value. For
example, assume that the attack detected by node 31 was
identified based in part on its TX success rate. In such a case,
voting request 602 may indicate this as one of the features
used to detect the attack. However, by definition, a neighbor-
ing node will not be able to estimate such a feature for the
target node. In particular, the neighboring node can detect a
successful transmission by the target node but it cannot detect
a transmission failure (e.g., it will detect a RX failure on its
side, but it will not be able to attribute it to a particular node),
unless the node sees traffic sent by the target node and the
corresponding acknowledgments.

According to various embodiments, a neighboring node
may use different feature vectors, depending on whether the
features in the voting request are externally observable. In one
embodiment, the neighboring node may estimate a feature
vector for the target node and use it as input for its local
classifier, if all of the features in the voting request are exter-
nally observable. However, if a feature in the voting request is
not externally observable, the neighboring node may instead
use the value of the feature included in the voting request
provided by the target node.

Values for features that are externally observable may or
may not be included in a voting request. For example, a target
node may always include feature values for all features used
to detect an attack. In another example, if a feature is of a type
that should be externally observable, the target node may
include only an identifier for the feature in lieu of the value of
the feature. For example, a voting request may indicate that an
RSSIvalue was used as an input feature to detect an attack but
may not include the actual RSSI value.

In some embodiments, each node may host two classifiers:
a first classifier that is used to detect whether the node itself'is
under attack and a second classifier that is used for making a
decision for the neighboring nodes (e.g., for purposes of
participating in a vote). Subsequently, the first classifier may
only take externally observable features as input. In this
embodiment, if a neighboring node detects an anomaly, it can
independently send a unicast alarm to the target neighbor
(e.g., without first being solicited with a voting request). In
turn, the target/neighbor may respond by broadcasting the
voting request. Besides avoiding consuming bandwidth by
issuing false alarms, this approach allows local information
already available to the network to be leveraged. Thus, the
FAR does not need to generate additional traffic in order to
retrieve this information.

Once a neighboring node has performed its own classifi-
cation regarding the target node (e.g., either using its own
observations or using observations provided to it by the target
node), the neighboring node may respond with a voting result
message to the target node. For example, as shown in FIG.
6D, neighboring nodes 21, 32, and 41-42 may send vote
messages 604 back to target node 31. In cases where an
802.15.4 radio layer is used, such a message may be sent
within a broadcast slot, to avoid interference by the attacker.
Other mechanisms for interference-free delivery may be used
in case of different link layer technologies. For example, in
the case of PL.C, a tone map only available to authenticated
nodes may be used to transmit the votes to avoid jamming.

In various embodiments, vote message 604 may include
one or more of the following:

US 9,230,104 B2

13

1) The classification result—In some cases, a neighboring
node may include the results of its own classification
within the vote message. For example, the neighboring
node may indicate whether the feature data for the target
node is labeled as “Normal” or “Attack.” In one embodi-
ment, the classification result may simply be a confir-
mation as to whether or not the classification by the
target node has been validated (e.g., the target node
detects an attack and the responding neighbor replies
with a yes or a no). In some implementations, the clas-
sification results may also include a confidence index
that quantifies how much confidence a neighboring node
has in its classification result.

2) The classification method used—A voting neighbor
may also include within a vote response information
regarding how it arrived at its vote. For example, a vote
response may indicate whether the neighboring node
used externally observable features or used feature val-
ues that were provided by the target node. If externally
observable features are used, a vector of feature values
may also be included in the vote message. The vote
message may further include an indication of the type of
classifier that was used to generate the vote (e.g., if
different types of classifiers are deployed throughout the
network).

3) A Lack of Resources Indicator—In some cases, a voting
node may not have sufficient resources to generate a
vote. In such cases, a vote reply message may include an
indication that the voter was unable to complete the
voting process. In other embodiments, a neighboring
node may simply ignore the voting request instead of
responding with this indicator.

4) A Lack of Information Indicator—In some situations, a
voting node may not have enough information to par-
ticipate in a vote. For example, a neighboring node may
not be able to participate in a vote if it does not have a
sufficient set of externally observable feature values or
the features indicated in the voting request are not com-
patible with its local classifier. In other embodiments, a
neighboring node may simply ignore the voting request
instead of responding with this indicator.

After sending voting requests to neighboring nodes, the
target node may arm a timer and wait for vote messages to be
received from its neighbors. When such a timer expires, the
target node will make its decision about whether an attack is
taking place using the votes that were received prior to expi-
ration of the timer. For example, as shown in FIG. 6E, target
node 31 may determine whether or not its neighboring nodes
have confirmed the detected attack through the voting pro-
cess.

Any number of different approaches may be taken by a
target node to determine a voting result. In one embodiment,
the target node may use a simple threshold mechanism (e.g.,
an attack is confirmed if at least M out of N nodes also
detected the attack). In another embodiment, the target node
may use the confidence indices associated with each vote, to
determine the voting result. For example, if maximum likeli-
hood classifiers are used by the voting nodes, the global attack
likelihood can be estimated by the target node based on the
information included in the vote messages. Such a computa-
tion can also include the result yielded by the node’s local
classifier. In another case, different weights can be assigned to
different votes and used to determine the voting result. For
example, votes from nodes that voted using their own obser-
vations (e.g., externally observable features) may be
weighted differently than votes from nodes that used the
values in the feature vector exported by the target node itself.

25

30

40

45

50

55

14

If a detected attack has been confirmed, either using exter-
nally observable features or using the exported features from
the target node, the target node may then proceed with alert-
ing a higher level device, such as the FAR. For example, node
31 may proceed with sending alert 508 to the FAR, as
depicted in FIG. 5B, if the neighboring nodes of node 31
confirmed the detected attack. In such a case, alert 508 may
include any or all of the information included in the vote
messages received by the target node. This information may
then be used by a more powerful classifier local to the FAR to
further validate the detection. In another embodiment, the
target node may send a broadcast message to all nodes in the
network, to report that the node is under attack. Any node
receiving such a message may then decide whether or not to
initiate attack mitigation.

FIG. 7 illustrates an example simplified procedure for
detecting a network attack using distributed voting, in accor-
dance with one or more embodiments described herein. The
procedure 700 may start at step 705, and continue on to step
710, where, as described in greater detail above, a network
device detects a potential network attack. In one embodiment,
the network device detects a potential attack by executing a
machine learning classifier (e.g., an ANN, SVM, etc.). As
noted above, such a classifier may generally operate by apply-
ing a label from plurality of labels to a set of input feature
values. Such feature values may include, but are not limited
to, RSSI data, RX success values, TX success values, band-
width usage measurements, a measure of distinct network
requests, combinations thereof, and any other measurement
that may indicate the presence of a network attack.

At step 715, the network device that detects the attack may
send a voting request to its neighboring nodes, as described in
greater detail above. In one embodiment, for example, the
network device may send the voting requests as broadcast
messages to its neighboring nodes. A voting request may
generally include any information needed by a neighboring
node to determine whether or not the device that sent the
voting request is being attacked. For example, the voting
request may include any or all of the following: the set of one
ormore input features that were used by the requesting device
in step 710 to detect the attack (e.g., RSSI, TX success, etc.),
values for the input features that were used by the requesting
device to detect the attack, the classification result reached by
the requesting device (e.g., the label applied to the input
features), the type of classifier used by the requesting device
(e.g., whether the classifier is based on an ANN, etc.), or other
such information.

At step 720, the requesting device receives votes from the
neighboring nodes, as detailed above. In one embodiment,
one or more of the votes may be generated by a particular
neighboring node using the set of input feature values that
were included in the voting request. In other words, a neigh-
boring device may execute its own local classifier using the
data from the requesting device, to generate a vote. In another
embodiment, one or more of the votes may be generated using
values for the set of input features that were observed by the
neighboring node. In other words, a particular neighboring
node may use its own externally observable information
regarding the requesting node, to perform its own classifica-
tion. The returned votes may include any information that
may be used by the requesting device to tally the votes and
make other judgments regarding the neighboring nodes. For
example, a vote from a neighboring node may include any or
all of the following: the conclusion reached by the neighbor-
ing node (e.g., an actual label generated by the local classifier,
a “yes or no” confirmation, etc.), information regarding how
the neighboring node reached the classification (e.g., whether

US 9,230,104 B2

15

externally observable data was used, whether the feature val-
ues included in the voting request were used, the type of
classifier that was executed, etc.), a confidence value associ-
ated with the conclusion, or the like.

At step 725, the requesting device confirms the presence of
the attack based on the received votes, as described in greater
detail above. In one embodiment, the requesting device may
starta local timer that ends the time period in which votes may
be counted (e.g., a vote received after expiration of the timer
may be disregarded). Various techniques may be used to
confirm the presence of the attack. For example, the request-
ing device may use majority voting, unanimous voting,
weighted voting (e.g., votes may be weighted based on their
associated confidence values, if available), or in any other
manner to determine whether or not the detected attack was
confirmed by the neighboring devices.

Atstep 730, the requesting device generates an alert that an
attack was detected, as highlighted in greater detail above. In
some embodiments, the classifier executed by the device may
be a lightweight classifier that uses less resource and/or has
lower performance than a more powerful classifier resident
on a supervisory device, such as a FAR or NMS. In such a
case, the alert may be sent to the supervisory device for
further validation and/or corrective measures. For example,
the alert may also include any or all of the following: an
indication that an attack was detected, information regarding
how the conclusion was reached (e.g., which nodes partici-
pated in the vote, which input features were used by the
voters, which values were used by the voters, etc.), and/or any
other information that may be used by the supervisory device
to confirm the presence of the attack. In another embodiment,
the alert may be broadcast throughout the network. For
example, one or more of the neighboring devices may insti-
tute corrective measures in response to receiving the alert.
Procedure 700 then ends at step 735.

FIG. 8 illustrates an example simplified procedure for par-
ticipating in a distributed vote for attack detection, in accor-
dance with one or more embodiments described herein. The
procedure 800 may start at step 805, and continues to step
810, where, as described in greater detail above, a voting
request is received from a neighbor device. As noted above,
the voting request may be sent in response to the neighbor
device detecting the presence of a network attack (e.g., a DoS
attack). In general, as also noted above, the voting request
may include any information needed by the receiving device
to make its own determination as to whether or not an attack
against the sending device is present (e.g., the input features
used to detect the attack, values for the input features, etc.).

At step 815, a feature set to evaluate is determined, as
detailed above. In one embodiment, the receiving device may
analyze the features included in the voting request and/or a
label included in the voting request, to determine whether or
not the receiving device can use its own observation data to
reach an independent conclusion (e.g., whether or not exter-
nally observable data may be used). In another embodiment,
some or all of the determined feature set may comprise fea-
ture values that were included in the received voting request.

At step 820, the feature set is used to determine whether an
attack is actually present, as highlighted above. Once the
receiving device has determined which feature values to ana-
lyze (e.g., its own observations or the observations of the
requesting device), the receiving device uses these values as
input to its own local classifier, to generate a vote. For
example, if the requesting device based the detection on fac-
tors that cannot be observed by the receiving device, the
receiving device may use the values from the voting request
as input to its own local classifier, to generate a vote. In

10

15

20

25

30

35

40

45

50

55

60

65

16

another example, if the receiving device has sufficient obser-
vations of its own to make the determination, this observation
data may be used as input to its local classifier.

At step 825, a vote is generated and sent to the neighboring
device that sent the voting request, as described in greater
detail above. Such a vote may include information regarding
the conclusion reached by the voter (e.g., confirming or deny-
ing the presence of the attack), information regarding how the
conclusion was reached (e.g., using its own observations or
that of the requesting device, details on its local classifier,
etc.), or a confidence value associated with the conclusion.
Such a vote may then be used by the requesting node to
determine whether or not the detected attack is actually
present or is a false positive. Procedure 800 then ends at step
830.

It should be noted that while certain steps within proce-
dures 700-800 may be optional as described above, the steps
shown in FIGS. 7-8 are merely examples for illustration, and
certain other steps may be included or excluded as desired.
Further, while a particular order of the steps is shown, this
ordering is merely illustrative, and any suitable arrangement
of'the steps may be utilized without departing from the scope
of'the embodiments herein. Moreover, while procedures 700-
800 are described separately, certain steps from each proce-
dure may be incorporated into each other procedure, and the
procedures are not meant to be mutually exclusive.

Thetechniques described herein, therefore, provide perfor-
mance improvements for attack detection obtained with a
single classifier by combining the outputs of classifiers hosted
by neighboring nodes using a voting process. The final result
of the voting process may result in fewer false positives,
thereby avoiding the generation of unnecessary traffic due to
false alarms (e.g., to alert the FAR). In addition, the tech-
niques herein allow a neighboring node to leverage locally
available data that a FAR would otherwise need to pull explic-
itly (e.g., to verify the attack), thus further reducing band-
width utilization in the network.

While there have been shown and described illustrative
embodiments that provide for validating the detection of a
network attack, it is to be understood that various other adap-
tations and modifications may be made within the spirit and
scope of the embodiments herein. For example, while the
techniques herein are described primarily with respect to
attack-detection classifiers, the techniques herein may also be
used to vote on different classification labels that are not
related to attack detection (e.g., labels that relate to other
network conditions). In addition, while the techniques herein
are described primarily in the context of an LLN, the tech-
niques herein may be applied more generally to any form of
computer network, such as an enterprise network.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that the
components and/or elements described herein can be imple-
mented as software being stored on a tangible (non-transi-
tory) computer-readable medium (e.g., disks/CDs/RAM/EE-
PROM/etc.) having program instructions executing on a
computer, hardware, firmware, or a combination thereof.
Accordingly this description is to be taken only by way of
example and not to otherwise limit the scope of the embodi-
ments herein. Therefore, it is the object of the appended
claims to cover all such variations and modifications as come
within the true spirit and scope of the embodiments herein.

US 9,230,104 B2

17

What is claimed is:

1. A method, comprising:

detecting, at a first network device, a potential network

attack by executing a classifier, wherein the classifier is
configured to select a label from among a plurality of
labels based on a set of input features;
sending voting requests that identify the potential network
attack to a plurality of neighboring network devices,
wherein the voting requests include a set of values for the
set of input features that were used to detect the potential
attack at the first network device, and wherein a particu-
lar neighboring network device determines input fea-
tures for a local classifier and uses the local classifier to
generate a vote regarding the potential network attack;

receiving, from each of the one or more of the neighboring
network devices, a vote regarding the potential network
attack;

confirming, by the first network device, that the network

attack is present based on the received votes; and
generating, by the first network device, an alert that an
attack has been detected.

2. The method as in claim 1, wherein a particular vote is
generated by a particular neighboring network device using
values for the set of input features that were observed by the
neighboring network node.

3. The method as in claim 1, wherein a particular vote is
generated by a particular neighboring network device using
the set of values for the input features included in the voting
requests.

4. The method as in claim 1, wherein the network attack is
confirmed after expiration of a timer.

5. A method, comprising:

receiving, at a network node, a voting request from a neigh-

boring node that indicates a potential network attack;

determining a set of feature values to be used as input to a

local classifier based on the voting request, wherein the
voting request includes the set of one or more feature
values;
determining, by the network node, whether the potential
network attack is present by using the determined set of
feature values as input to the local classifier; and

sending, by the network node, a vote to the neighboring
node that indicates whether the potential network attack
was determined to be present.

6. The method as in claim 5, further comprising:

determining that the classifier matches a type of classifier

indicated by the voting request.

7. The method as in claim 5, further comprising:

generating a particular feature value by observing a com-

munication link to the neighboring node.

8. The method as in claim 5, wherein the vote indicates
whether the vote was based on feature values observed by the
network node or was based on feature values included in the
voting request.

9. An apparatus, comprising:

one or more network interfaces to communicate with a low

power and lossy network (LLN);

a processor coupled to the network interfaces and adapted

to execute one or more processes; and

a memory configured to store a process executable by the

processor, the process when executed operable to:

detect a potential network attack by executing a classi-
fier, wherein the classifier is configured to select a
label from among a plurality of labels based ona set of
input features;

send voting requests that identify the potential network
attack to a plurality of neighboring network devices,

10

15

20

25

30

35

40

45

50

55

60

65

18

wherein the voting requests include a set of values for
the set of input features that were used to detect the
potential attack at the first network device, and
wherein a particular neighboring network device
determines input features for a local classifier and
uses the local classifier to generate a vote regarding
the potential network attack;

receive, from each of the one or more of the neighboring
network devices, a vote regarding the potential net-
work attack;

confirm that the network attack is present based on the
received votes; and

generate an alert that an attack has been detected.

10. The apparatus as in claim 9, wherein a particular vote is
generated by a particular neighboring network device using
values for the set of input features that were observed by the
neighboring network node.

11. The apparatus as in claim 9, wherein a particular vote is
generated by a particular neighboring network device using
the set of values for the input features included in the voting
requests.

12. The apparatus as in claim 9, wherein the network attack
is confirmed after expiration of a timer.

13. An apparatus, comprising:

one or more network interfaces to communicate with a low

power and lossy network (LLN);

a processor coupled to the network interfaces and adapted

to execute one or more processes; and

a memory configured to store a process executable by the

processor, the process when executed operable to:

receive a voting request from a neighboring node that
indicates a potential network attack;

determine a set of feature values to be used as input to a
local classifier based on the voting request, wherein
the voting request includes the set of one or more
feature values;

determine whether the potential network attack is
present by using the determined set of feature values
as input to the local classifier; and

send a vote to the neighboring node that indicates
whether the potential network attack was determined
to be present.

14. The apparatus as in claim 13, wherein the process when
executed is further operable to:

determine that the classifier matches a type of classifier

indicated by the voting request.

15. The apparatus as in claim 13, wherein the process when
executed is further operable to:

generate a particular feature value by observing a commu-

nication link to the neighboring node.

16. The apparatus as in claim 13, wherein the vote indicates
whether the vote was based on feature values observed by the
network node or was based on feature values included in the
voting request.

17. A tangible, non-transitory, computer-readable media
having software encoded thereon, the software when
executed by a processor operable to:

receive a voting request from a neighboring node that indi-

cates a potential network attack;

determine a set of feature values to be used as input to a

local classifier based on the voting request, wherein the
voting request includes the set of one or more feature
values;

determine whether the potential network attack is present

by using the determined set of feature values as input to
the local classifier; and

US 9,230,104 B2

19

send a vote to the neighboring node that indicates whether
the potential network attack was determined to be
present.

18. The tangible, non-transitory, computer-readable media
as in claim 17, wherein the software when executed by the
processor is further operable to:

determine that the classifier matches a type of classifier

indicated by the voting request.

19. The tangible, non-transitory, computer-readable media
as in claim 17, wherein the vote indicates whether the vote
was based on feature values observed by the network node or
was based on feature values included in the voting request.

20. A tangible, non-transitory, computer-readable media
having software encoded thereon, the software when
executed by a processor operable to:

detect a potential network attack by executing a classifier,

wherein the classifier is configured to select a label from
among a plurality of labels based on a set of input fea-
tures;

send voting requests that identify the potential network

attack to a plurality of neighboring network devices,
wherein the voting requests include a set of values for the

10

15

20

20

set of input features that were used to detect the potential
attack at the first network device, and wherein a particu-
lar neighboring network device determines input fea-
tures for a local classifier and uses the local classifier to
generate a vote regarding the potential network attack;

receive, from each of the one or more of the neighboring
network devices, a vote regarding the potential network
attack;

confirm that the network attack is present based on the

received votes; and

generate an alert that an attack has been detected.

21. The tangible, non-transitory, computer-readable media
as in claim 20, wherein a particular vote is generated by a
particular neighboring network device using values for the set
of input features that were observed by the neighboring net-
work node.

22. The tangible, non-transitory, computer-readable media
as in claim 20, wherein a particular vote is generated by a
particular neighboring network device using the set of values
for the input features included in the voting requests.

#* #* #* #* #*

